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Abstract

We use the solution to the Björling problem for minimal surfaces in Rn to classify the complete minimal
Möbius strips in Rn whose total curvature is finite and of critical value for Gackstatter’s inequality.
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1. Introduction

The classical Björling problem for minimal surfaces in R3 (see [3,11] for instance) goes back
to 1844, and asks for the construction of a minimal surface in R3 containing a given curve in R3

with a given unit normal along it. The solution to this problem was obtained by Schwarz in 1890,
by using holomorphic data. Some extensions of this classical Björling problem to other geometric
theories, as well as some global applications of it have been developed in [1,2,5–7]. In particular,
the extension of the Björling problem to Rn consists on the following:

Let β(s) be a regular analytic curve in Rn, and let Π(s) denote an analytic distribution of
oriented planes along β(s) such that β′(s) ∈ Π(s) for all s. Find all minimal surfaces in Rn

that contain β(s) and such that its tangent plane distribution along β(s) is given by Π(s).

The objective of this work is to apply the Björling problem to the global study of the minimal
surfaces in Rn with the topology of a Möbius strip. More concretely, we shall be interested in the
minimal Möbius strips of Rn that are complete and of finite total curvature.
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We have organized the present paper as follows. In Section 2 we formulate in a global way the
general solution to the Björling problem in Rn, and use it to provide a general description free of
the period problem for the minimal Möbius strips ofRn. In Section 3 we use the Björling problem
to study the complete minimal Möbius strips of finite total curvature inRn, showing that any such
surface is the solution to a particular Björling problem in which the initial data are expressed as
vector trigonometric polynomials. At last, in Section 4 we give a geometric construction of all
complete minimal Möbius strips of finite total curvature inRn that attain equality in a fundamental
inequality of the theory: the Gackstatter inequality [4,12].

2. Möbius strips and the Björling problem

Definition 1. A pair of Björling data in Rn is a regular analytic curve β : I → R
n together with

an analytic vector field B : I → R
n along β so that 〈β′, β′〉 = 〈B,B〉 > 0 and 〈β′, B〉 = 0.

Obviously, any pair of initial data {β(s),Π(s)} for the Björling problem describe a pair of
Björling data given by β(s) andB(s) = Jβ′(s), being Jβ′(s) theπ/2-rotation of β′(s) in the oriented
tangent plane Π(s).

Theorem 2 (Alı́as and Mira [2]). Let β(s), B(s) be Björling data on a real interval I. There is a
unique solution to the Björling problem in Rn for the data β(s), B(s).

Such minimal surface can be constructed in a neighbourhood of β(s) as

ψ(s+ it) = Reβ(z) + Im
∫ z

s0

B(w) dw. (2.1)

Here β(z), B(z) are holomorphic extensions of β(s), B(s) over a simply connected domainΩ ⊆ C
containing I, and the integral is taken along an arbitrary path in Ω joining a fixed base point
s0 ∈ I with z = s+ it.

It is possible to give a global reformulation of the holomorphic representation given by the
above theorem. Specifically, letψ : Σ → R

n be a minimal surface, letΓ ⊂ Σ be a regular analytic
curve and define β = ψ(Γ ). Then there is a real analytic one-form B along Γ which is tangent to
the immersion, and such that 〈dβ,B〉 = 0 and 〈dβ, dβ〉 = 〈B,B〉. This one-form may be chosen so
that the Weierstrass one-form Φ = ψz dz of ψ restricted to Γ verifies Φ|Γ = σ for σ = dβ − iB.
Hence, σ extends holomorphically to Σ and its extension Φ recovers the immersion ψ via the
Weierstrass representation: ψ = 2Re

∫
Φ : Σ → R

n.
Conversely, let Σ be a Riemann surface and Γ ⊂ Σ be a regular analytic curve. Define then

Björling data β,B so that β : Γ → R
n is a regular analytic curve and B is an analytic one-form

along β verifying 〈dβ,B〉 = 0 and 〈dβ, dβ〉 = 〈B,B〉. Let σ = dβ − iB, and assume:

1. σ admits a global extension Φ on Σ as a holomorphic one-form.
2. ||Φ|| > 0.
3. Φ has no real periods.

Then ψ = Re
∫ z
Φ : Σ → R

n is a minimal surface such that ψ|Γ = β, and its cotangent plane at
every point of Γ is spanned by dβ and B.

To treat non-orientable minimal surfaces inRn we first need to make some preliminary remarks.
We refer to [12] for the details.

Letψ′ : M → R
n be a minimal immersion of a non-orientable surfaceM inRn. Then the two-

sheeted oriented cover of M, denoted by Σ, inherits naturally a Riemann surface structure and
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we have a canonical projection p : Σ → M. We can also define a map I : Σ → Σ that verifies
p ◦ I = p, and which is actually an antiholomorphic involution on Σ without fixed points. Then
M can be identified naturally with the pair (Σ, I).

In this way, if ψ : Σ → R
n is a minimal surface inRn and there is an antiholomorphic involu-

tion I : Σ → Σwithout fixed points such thatψ ◦ I = ψ, then we can defineψ′ : M ≡ (Σ, I) →
R
n, which is a non-orientable minimal surface. And conversely, all non-orientable minimal sur-

faces are expressed in the above way.

Lemma 3. Let β(s), B(s) be Björling data such that β(s) is T-periodic andB(s) is T-antiperiodic,
i.e. B(s+ T ) = −B(s) for all s. Then the minimal surface generated by these data has in a
neighbourhood of β(s) the topology of a Möbius strip, with fundamental group spanned by β(s).

Conversely, every minimal Möbius strip in Rn is generated in this way.

Proof. Let ψ′ : M → R
n be a minimal immersion of a Möbius strip M, and choose a regular

analytic closed curve Γ̃ ⊂ M that spans the fundamental group of M.
Let Σ be the two sheeted cover of M endowed with its canonical Riemann surface structure,

and let I : Σ → Σ be its associated antiholomorphic involution without fixed points.
In this way, there exists a regular analytic closed curveΓ ⊂ Σ spanning the fundamental group

ofΣ, given by p(Γ ) = Γ̃ . Once here, we can parametrize Γ as Γ (s) : R→ Γ , where Γ (s) is 2T -
periodic for some T > 0, and verifies I(Γ (s)) = Γ (s+ T ) for all s. Particularly, Γ̃ (s) = p(Γ (s))
is T-periodic.

Consider nowψ : Σ → R
n given byψ = ψ′ ◦ p. Then β(s) = ψ(Γ (s)) is T-periodic. Besides,

ifΠ(s) denotes the distribution of oriented tangent planes of ψ : Σ → R
n along β(s), it happens

that Π(s+ T ) agrees with Π(s), but with opposite orientation. Therefore, if B(s) = Jβ′(s) is the
π/2-rotation of β′(s) in the oriented plane Π(s), we obtain B(s+ T ) = −B(s) for all s ∈ R.

Conversely, take β(s), B(s) Björling data so that β(s) is T-periodic andB(s) is T-antiperiodic. In
this case, arguing as in [6,7], the solution to this Björling problem, given by (2.1), is defined on the
quotient Ω/(2TZ), being Ω the open set of C determined by Theorem 2. Clearly, Ω contains R,
and we can assume that it verifies the symmetry conditionΩ = Ω∗, beingΩ∗ = {z̄ : z ∈ Ω}. Now
observe that onΩ/(2TZ) we can define the antiholomorphic involution I : Ω/(2TZ) → Ω/(2TZ)
without fixed points given by

I(z) = z̄+ T. (2.2)

In addition, the map ψ : (Ω/(2TZ), I) → R
n given by (2.1) verifies ψ = ψ ◦ I, and thus defines

a minimal Möbius strip. �

3. Trigonometric Björling data

From this point until the end of the paper we investigate complete minimal surfaces of finite
total curvature in Rn by means of the solution to Björling problem.

Let ψ : Σ → R
n be a complete minimal surface that has finite total curvature, that is, its total

curvatureC(Σ) = ∫
Σ
K dAhas finite (negative) value. Here dA is the area element associated to the

metric ds2 of the surfaceΣ. ThenΣ has the conformal type of a compact Riemann surface minus
a finite number of points, and the Weierstrass one-form Φ = ψz dz extends meromorphically to
those points, called ends of the surface. In addition, we have the quantification C(Σ) = −2πm,
for m ∈ N. More exactly, if Σ ∼= Σ̄ \ {p1, . . . , pr} where Σ̄ is a compact Riemann surface of
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genus g, and µj denotes the order of the singularity of Φ at pj , then

C(Σ) = −2π

⎛
⎝2g− 2 +

r∑
j=1

µj

⎞
⎠ .

This expression is known as the Jorge–Meeks formula. We refer the reader to [13,8,14,9,12] for
details regarding complete minimal surfaces of finite total curvature.

Apart from this formula, there is also an important inequality in the theory, due to Gackstatter
[4]. Denote by Dim(ψ) the dimension of the smallest affine subspace of Rn that contains the
image of ψ : Σ → R

n. Then Gackstatter’s inequality asserts that

Dim(ψ) ≤ 3 − r − 4g− C(Σ)

π
. (3.1)

The case of complete non-orientable minimal surfaces of finite total curvature is studied by
passing to the two-sheeted oriented covering and applying there the above theory, keeping control
of the antiholomorphic involution appearing in the non-orientable description. In particular, in this
context there are analogous relations to the Jorge–Meeks formula and Gackstatter’s inequality.
We refer to [12] for the details.

Next, we turn back to the Björling problem, proposing the following definition.

Definition 4. A pair of Björling data β(s), B(s) in Rn is said to be trigonometric if there exist
αm, σm, δm, γm in Rn, 1 ≤ m ≤ N such that

β′(s) =
N∑
m=1

{αm cos(ms) + σm sin(ms)}, (3.2)

and

B(s) =
N∑
m=1

{δm cos(ms) + γm sin(ms)} + δ0. (3.3)

The trigonometric data β(s), B(s) are non-null if their holomorphic extensions on C verify
β′(z) − iB(z) = 0 for all z.

By means of this concept we show next a geometric description of the complete minimal
cylinders of finite total curvature in Rn.

Proposition 5. Let β(s), B(s) be non-null trigonometric data in Rn given by (3.2) and (3.3), and
assume that the condition:

(αm, σm) = ±(γm,−δm) (3.4)

is fulfilled for some m ≥ 1. Then the solution to Björling problem for the data β(s), B(s) given
by Theorem 2 is a complete minimal surface ψ : C/(2πZ) → R

n with the topology of a cylinder
and finite total curvature −2π(N +N ′), being

N = max{m ∈ N : (αm, σm) = (γm,−δm)},
N ′ = max{m ∈ N : (αm, σm) = −(γm,−δm)}.

Conversely, every complete minimal cylinder of finite total curvature in Rn can be constructed
following this process.
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Proof. Let ψ : Σ → R
n be a complete minimal surface of finite total curvature with the

topology of a cylinder. Then, as Σ is conformally equivalent to a finitely punctured compact
Riemann surface, we must have Σ ≡ C \ {0}. In addition, its Weierstrass one-form extends
meromorphically to C ∪ {∞}. Hence, if w denotes the complex parameter of C \ {0}, it holds
Φ = (φ̃1(w), . . . , φ̃n(w)) dw, where each φ̃j(w) is of the form:

φ̃j(w) = pj(w)

wkj
(3.5)

being pj(w) a polynomial with pj(0) = 0, and kj ∈ N.
As Φ has no real periods, completeness of ψ at the end 0 is equivalent to the condition kj ≥ 2

for some j ∈ {1, . . . , n}. In addition, the change of variable ζ = 1/w shows that completeness at
∞ is equivalent to degree(pj(w)) ≥ kj for some j ∈ {1, . . . , n}.

Besides, the Jorge–Meeks formula for minimal surfaces in Rn provides:

C(Σ) = −2π(−2 + µ1 + µ2), (3.6)

where µ1 (resp. µ2) is the order ofΦ at the end 0 (resp. ∞). Now, by (3.5) we obtain directly that

µ1 = max{kj}1≤j≤n (3.7)

and

µ2 = max{degree(pj) + 2 − kj}1≤j≤n. (3.8)

To relate these facts with the Björling problem, we identifyC \ {0} with the quotientC/(2πZ)
by means of

w(z) = eiz. (3.9)

In this way, our surface is expressed as ψ : C/(2πZ) → R
n. As Φ extends meromorphically to

the compactification of C/(2πZ), it must be of the form Φ = φ(z) dz for

φ(z) =
N∑

−N ′
cm eimz, (3.10)

being cm ∈ Cn for each m ∈ {−N ′, . . . , N}. In other words, φ(z) is a vector trigonometric poly-
nomial. Furthermore, we shall assume without loss of generality that cN = 0, and c−N ′ = 0, and
observe that φ(z) may be written alternatively as

φ(z) = c0 +
max{N,N ′}∑
m=1

{am cos(mz) + bm sin(mz)}, (3.11)

where am = cm + c−m and bm = i(cm − c−m).
In addition, from the above computations the completeness of the surface is equivalent to the

condition:

cm = 0 for somem ≥ 1 and c−m′ = 0 for somem′ ≥ 1. (3.12)

Moreover, the total curvature of ψ takes the value C(Σ) = −2π(N +N ′).
Now denoteβ(s) = ψ(s, 0) andB(s) = (∂ψ/∂t)(s, 0), where z = s+ it. Thenφ(z) = 2(∂ψ/∂z),

and so by (3.10) we see that β(s), B(s) are trigonometric Björling data. Moreover, the regularity
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of the surface indicates that these data are non-null. Specifically, following the notation in (3.10),
we obtain that β′(s) and B(s) are given, respectively, by (3.2) and (3.3) for

αm − iδm = cm + c−m, σm − iγm = i(cm − c−m), δ0 = c0.

From here, it is straightforward to check that completeness of the surface, defined by (3.12), is
expressed alternatively as (3.4). Moreover, the total curvature is described as we specified above:
C(Σ) = −2π(N +N ′).

Conversely, if β(s), B(s) are trigonometric Björling data, then we know that the surface they
describe is parametrized as ψ : C/(2πZ) → R

n, and its Weierstrass one-form Φ extends mero-
morphically to the ends ±∞. Furthermore, as the data are non-null, the surface is regular, and by
(3.4) it is complete. Finally, the computation of the value of the total curvature is direct. �

By means of this result we can explore the situation referred to complete minimal Möbius
strips of finite total curvature.

Theorem 6. Let β(s), B(s) be non-null trigonometric Björling data so that β(s) only has terms of
even order, and B(s) only has terms of odd order. Then the solution to the Björling problem inRn

for the data β(s), B(s) described by Theorem 2 is a complete minimal Möbius strip with finite total
curvature −2πmax{N1, N2}, beingN1 (resp.N2) the degree of the trigonometric polynomial β(s)
(resp. B(s)).

Conversely, all complete minimal Möbius strips in Rn of finite total curvature are recovered
in this way.

Proof. Let ψ′ : M → R
n be a minimal Möbius strip in the conditions of the theorem. Then M

is homeomorphic to a once punctured projective plane RP2 \ {q}, and the two-sheeted covering
Σ of this surface has the topology of a cylinder. As this covering must have the conformal type
of a twice punctured Riemann sphere, we may assume that Σ ≡ C \ {0}, and hence its double
surface is ψ : C \ {0} → R

n. In addition, the antiholomorphic involution without fixed points
under which M is recovered is given by Ĩ(w) = −1/w̄.

Moreover, if we make the change of parameter (3.9), the surface is expressed as ψ :
(C/(2πZ), I) → R

n, where I : C/(2πZ) → C/(2πZ) is defined as (2.2).
Since the surface is complete of finite total curvature, by Theorem 5, if we define β(s) = ψ(s, 0)

and B(s) = (∂ψ/∂t) (s, 0), where z = s+ it, then β(s), B(s) are non-null trigonometric Björling
data.

But now we get from Lemma 3 that β(s) is π-periodic, andB(s) is π-antiperiodic. This ensures
that β(s), given by (3.2), only has terms of even order, i.e. αm = σm = 0 for every odd number
m. On the other hand B(s), given by (3.3), has all its terms of odd order.

Since β(s) is not constant, the completeness condition (3.4) is fulfilled. The value of the total
curvature follows from Proposition 5 and the obvious relation C(M) = C(Σ)/2.

The converse is easily obtained from Lemma 3 and Proposition 5. �

4. Möbius strips of critical total curvature

Let us begin this last section with the construction of some basic complete minimal Möbius
strips by means of the solution to adequate Björling problems.

Example 7 (Meeks minimal Möbius strip). The easiest way to take Björling data which generate
a Möbius strip by means of Lemma 3 is to choose a circle as curve, and suppose that the tangent
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Fig. 1. Meeks minimal Möbius strip in R3, and its generating circle.

plane of the surface along this circle turns at a constant angular speed, so that it describes a
complete turn for every two turns of the circle. In other words, let us take the data

β(s) = 1

2
(cos(2s), sin(2s), 0), B(s) = cos s (cos(2s), sin(2s), 0) + sin s (0, 0, 1).

Then, Theorem 6 indicates that the solution to this Björling problem is a minimal Möbius strip
in R3 that is complete, regular, and has finite total curvature −6π. It was first obtained by Meeks
[10] Fig. 1.

Example 8 (Oliveira’s examples in R3). From a geometric viewpoint, it is easy to generalize the
Björling data of Meeks minimal Möbius strip so that the new data still generate a minimal Möbius
strip inR3. For this, we ask the circle to trace an even number of turns for each turn of the tangent
plane. Analytically, this means to consider the Björling data:

β(s) = 1

2k
(cos(2ks), sin(2ks), 0), B(s) = cos s (cos(2ks), sin(2ks), 0) + sin s (0, 0, 1).

Again, the solution to this Björling problem is a minimal Möbius strip in R3 that is regular and
complete. By Theorem 6 its total curvature is −2π(2k + 1). These examples were obtained by
Oliveira in [12].

Example 9 (Möbius strips in R4). Motivated by Meeks and Oliveira’s examples, we turn our
attention to R4 and define the data:

β(s) = 1

2k
(cos(2ks), sin(2ks), 0, 0), B(s) = (0, 0, cos s, sin s).

These Björling data generate a complete, regular minimal Möbius strip that lies fully in R4, and
has finite total curvature −4πk. All these examples were obtained by Oliveira [12].

Our final result concerns complete minimal Möbius strips that have finite total curvature of
critical value for the non-orientable Gackstatter inequality. This inequality was obtained in [12]
as a non-orientable analogue of Gackstatter’s inequality (3.1), and for the case of Möbius strips
(i.e. once punctured projective planes) reduces to

Dim(ψ) ≤ −C(M)

π
. (4.1)

Definition 10. A complete minimal Möbius strip in Rn has critical total curvature if it attains
equality in Gackstatter’s inequality (4.1).
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In particular, a Möbius strip of critical total curvature always verifies that Dim(ψ) is even. For
instance, the minimal Möbius strip in Example 9 has critical total curvature −4π.

We intend to determine all the complete minimal Möbius strip that have critical total curvature.
For this, the following lemma is quite useful.

Lemma 11. Let f(s) = a + ∑m
k=1 gk cos(ks) + hk sin(ks) be a vector trigonometric polynomial

of degree m in Rn, and let N be the rank of the family in Rn:

F = {g1,h1, . . . , gm,hm}. (4.2)

Then Dim(f(s)) = N, being Dim(f(s)) the dimension of the smallest affine subspace of Rn that
contains the image of f(s).

Proof. Obviously, the image of f(s) − a lies in the subspace spanned by F. Hence, Dim(f(s)) ≤
N. But now, if Dim(f(s)) < N, there would exist a vector v in the subspace spanned by F so that
〈f(s), v〉 is constant. This would imply that v is orthogonal to F, which is impossible. �
Theorem 12. Let β(s) : R→ R

2n and B(s) : R→ R
2m be vector trigonometric polynomials,

where m = n if n is even and m = n+ 1 if n is odd, such that

1. β(s) has degree 2n, only has terms of even order and the family of its coefficients is linearly
independent.

2. B(s) has degree 2m− 1, only has terms of odd order and the family of its coefficients is linearly
independent.

3. 〈β′(s), β′(s)〉 = 〈B(s), B(s)〉 > 0, and the entire extensions β(z), B(z) of β,B do not vanish
simultaneously on C.

Then β,B are Björling data in R2n × R2m ≡ R2(n+m), and the minimal surface they generate
is a complete minimal Möbius strip that has critical total curvature of value −2π(m+ n).

Conversely, every complete minimal Möbius strip of critical total curvature is constructed in
this way.

Proof. Let ψ : (C/(2πZ), I) → R
l be a complete minimal immersion of the Möbius strip M =

(C/(2πZ), I) in some Rl, and assume that it has critical total curvature of value −2πk. Thus, in
particular, ψ lies fully in some R2k ⊂ Rl, i.e. it does not lie in any proper affine subspace of this
R

2k. Hence, Theorem 6 guaranties that ψ can be recovered as the solution to a Björling problem
in R2k with trigonometric initial data β(s), B(s), so that

1. β(s) only has terms of even order, and B(s) only has terms of odd order, and
2. the total curvature of ψ is −2πmax{N1, N2}, being N1 (resp. N2) the degree of β′(s) (resp.
B(s)).

Thus, k = max{N1, N2}.
Suppose that N1 > N2, and so k = N1. Hence, k is even, and as β(s) only has terms of even

order, by Lemma 11 we obtain Dim(β′(s)) ≤ k. In addition, as N2 ≤ k − 1 and B(s) only has
terms of odd order, it happens that Dim(B(s)) ≤ k. From this and since ψ lies fully in R2m, we
get Dim(β′(s)) = Dim(B(s)) = k. So, by Lemma 11 the degree of β′(s) is k, the degree of B(s) is
k − 1, and their families of coefficients are linearly independent.

Suppose now that N2 > N1. So k = N2, an odd number. Acting as above we infer that
Dim(B(s)) ≤ k + 1 and Dim(β′(s)) ≤ k − 1. Again, as the surface is full we obtain that
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Dim(B(s)) = k + 1, Dim(β′(s)) = k − 1, B(s) has degree k, β′(s) has degree k − 1 and their
families of coefficients are linearly independent.

Finally, as it is obvious that the subspaces spanned by β′(s) and B(s) generate R2k and are
orthogonal, we can identify span(β′(s)) ≡ R2n, span(B(s)) ≡ R2m, and R2k ≡ R2n × R2m, and
the numbers n,m verify the conditions of the theorem.

The converse follows directly from Lemma 11 and Theorem 6. �

In [12, Theorem 2.11], Oliveira found for each m ≥ 2 an example of a complete minimal
Möbius strip of critical total curvature lying fully in R2m. The following example generalizes
those ones by means of Theorem 12.

Example 13 (Möbius strips of critical total curvature). Consider m ≥ 2 and ε ∈ {0, 1} so that
m+ ε is even, and take non-null numbers cl, dl ∈ R verifying

4
(m−ε)/2∑
l=1

l2c2
l =

(m+ε)/2∑
l=1

d2
l > 0.

Define additionally the curve β(s) : R→ R
m−ε as

β(s) = (c1 cos(2s), c1 sin(2s), . . . , c(m−ε)/2 cos((m− ε)s), c(m−ε)/2 sin((m− ε)s))

and the field B(s) : R→ R
m+ε given by

B(s) = (d1 cos(s), d1 sin(s), . . . , d(m+ε)/2 cos((m+ 1 − ε)s), d(m+ε)/2 sin((m+ 1 − ε)s)).

Then, if we identify R2m ≡ Rm−ε × Rm+ε, it holds that β(s), B(s) are non-null trigonometric
Björling data in R2m that satisfy the conditions in Theorem 12. So, the solution to this Björling
problem is a complete minimal Möbius strip in R2m with critical total curvature of value −2πm.
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